

NPDES Compliance Overview

Doug Wise Portland Water Bureau December 14, 2021

Slide Credit and huge thanks to Mac Gifford

What is NPDES?

Clean Water Act

US Environmental Protection Agency

Oregon Department of Environmental Quality

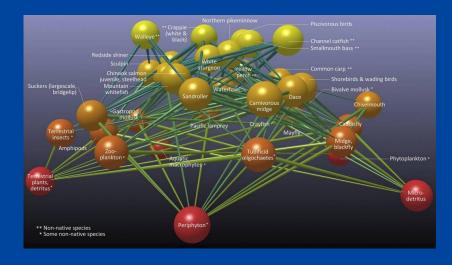
National Pollutant Discharge Elimination System

Multiple NPDES permits cover PWB work

PWB Supply System - Individual Industrial Wastewater Permit

PWB Distribution System -

BES Municipal Separated Storm Sewer System (MS4) Permit


The same basic approach to managing discharges applies across the board, the main difference is in the paper work!

Um, safe drinking water is also "industrial wastewater"?

- Low levels of chlorine are toxic to aquatic life
- Great for the glass, bad for the brook

When does NPDES apply?

Tank Draining

Pipe Draining

Disinfection of Facilities

Flushing

Main Breaks

We can be fined how much?!?

• DEQ, EPA, and/or third parties can bring action for non-compliance

2. Penalties for Water Pollution and Permit Condition Violations
ORS 468.140 allows the Department to impose civil penalties up to \$10,000 per day for violation of a term, condition, or requirement of a permit. Additionally 40 CFR 122.41 (A) provides that any person who violates any permit condition, term, or requirement may be subject to a federal civil penalty not to exceed \$25,000 per day for each violation.

Under ORS 468.943 and 40 CFR 122.41(a), unlawful water pollution, if committed by a person with criminal negligence, is punishable by a fine of up to \$25,000 imprisonment for not more than one year, or both. Each day on which a violation occurs or continues is a separately punishable offense.

Under ORS 468.946, a person who knowingly discharges, places, or causes to be placed any waste into the waters of the state or in a location where the waste is likely to escape into the waters of the state is subject to a Class B felony punishable by a fine not to exceed \$200,000 and up to 10 years in prison. Additionally, under 40 CFR 122.41(a) any person who knowingly discharges, places, or causes to be placed any waste into the waters of the state or in a location where the waste is likely to escape into the waters of the state is subject to a federal civil penalty not to exceed \$100,000, and up to 6 years in prison.

- Exceeding chlorine or pH limits
- Not monitoring or reporting
- Negatively impacting streams

Bureau Administrator (and delegated signatory) face potential individual liability

PWB Supply System permit requirements

- Applies numeric limits at conduit & groundwater blow-offs
- Total Chlorine < 0.1 mg/L
- 6.0 < pH < 9.0
- Columbia Slough: Total Phosphorus < 0.026 mg/L
- Prohibits erosion or flooding (aka hydromodification)
- Daily monitoring record results
- Monthly reporting to DEQ/EPA
- Staff training
- Johnson Creek: Flow < 10% of creek flow at outfall per City Code

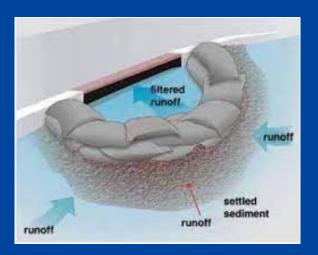
BES MS4 Permit requirements

- Narrative criteria applicable to distribution system discharges
- Prohibits non-stormwater discharges into storm system
 - "Uncontaminated water line flushing" and "Potable water sources" are provisionally allowed
- Provisionally allowed discharges may be prohibited if they "are or become a significant source of pollutants"
 - BES Batch Discharge Authorizations document BMPs and help protect PWB's ability to conduct these activities
 - Chlorine & Sediment are pollutants: turbid water discharges are prohibited
- Control pollution from municipal operations
- No erosion or flooding (aka hydromodification)
- Staff training

SOP for PWB permit

Procedure Name Water Qua	lity Monitoring NPDES Outfal	Revision 0 Effective Date 5/01/2018	PORTLAND WATER BUREAU		
Name of Approver	Title	Signature	Date	Author	
Danny Allison	Water Operations Manager			Eloise Eccles	
Doug Wise	Water Resources Program Manager			and Mac Gifford	
Chris Wanner	Director of Water Operations			x3-1507	
Michael Stuhr	Portland Water Bureau Administrator				

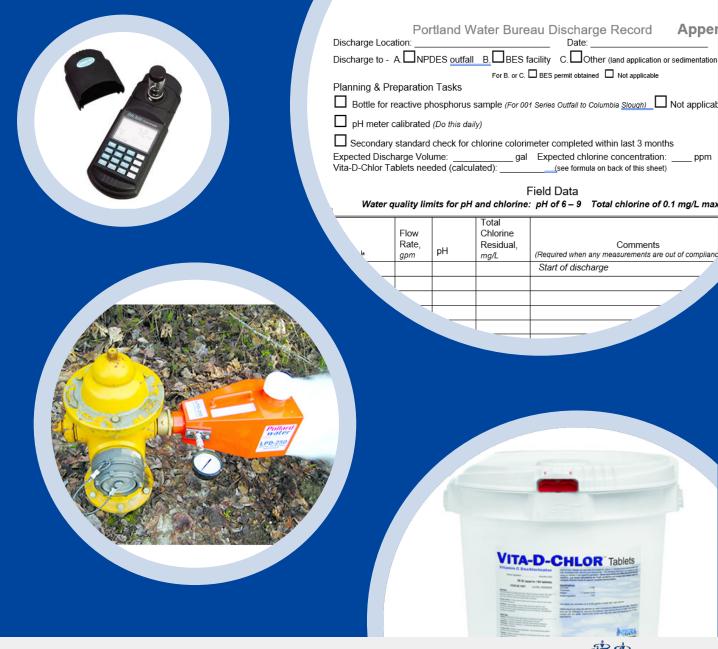
- Defines discharge limits
- Estimate number of tablets and the flow rate needed
- Field measurement instructions
- Records and reporting
- What to do if something goes wrong
- Training


BMPs for BES permit

- Obtain Discharge Authorization
 - BES: Bret Davison (3-7588)
- Follow applicable management practices
 - Sweep or remove debris from gutter before discharge
 - Ensure chlorine is <0.1 mg/l
 - Control discharge rate to prevent traffic hazards & inlet backup
 - One or more sediment control mechanisms adapted to location:
 - Infiltrate where practical (take care on slopes)
 - Inlet protection/filtering devices
 - Temporary impoundment(s) to slow flow and settle sediment
 - Use a container like a baker tank to settle fine sediment
 - Stop discharge if sediment is entering an inlet/stream!!

Potable Water Discharge Request Form (For batch discharges of potable water to the city of Portland sewerage system)

Section I (to be completed by Water Bureau personnel prior to discharge)


Site Name and Address:	Mt Calvary Tank - DRAIN 5425 W Burnside Rd	
Contact Person and Phone No.:	Brian Robison 503.849.1730 Tim Kading 503.823.6315	DMR
Receiving Discharge Facility:	Surface > Ravine > Balch Creek	
Estimated Duration:	2 days	
Maximum Volume:	300,000 Gallons	
Maximum Flow Rate:	200 GPM	
Start Date and Time:	Monday, September 19, 2016	

Planning and Preparation

- Equipment (hoses, meters, diffuser, signage)
- Vita-D-Chlor tablets
- Calibrated field pH and chlorine analyzer
- Erosion control supplies
- NPDES Discharge Record
- Coordinate with lab for P analysis, if needed

Why Do We Use Ascorbic Acid?

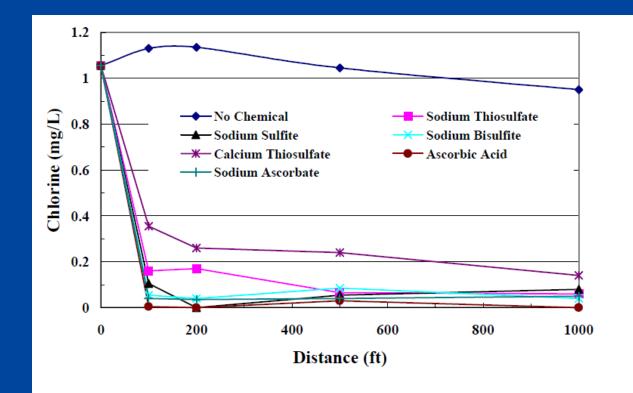


Figure 2. Chlorine concentrations at Portland waters when stoichiometric concentrations of dechlorination chemicals were added to neutralize chlorine in potable water from a hydrant.

Pavement does not dissipate chloramine

Other chemicals work, but not as quickly or completely.

Ascorbic acid neutralized the chlorine residual within 100' (24 seconds).

Ascorbic acid is also safer than sulfur compounds for aquatic life.

Tablets Needed

$$Total\ Tablets\ Needed = \frac{(Pipe\ Diameter\ (in))^2*\left(Chlorine\ Concentration\ (ppm)\right)*\left(Pipe\ Length\ (ft)\right)}{278,075}$$

$$Total\ Tablets\ Needed = \frac{(Gallons\ Drained)*(Chlorine\ Concentration\ (ppm))}{11{,}529}$$

...Plus a few extra

How fast to use tablets

Tablets Needed Per Hour =
$$\frac{(Flow\ Rate\ (GPM))*(Chlorine\ Concentration\ (ppm))}{192}$$

Or the table attached to the protocol...

Appendix A Dechlorination Chemical Feed Rates for Various Discharge Flows and Chlorine Concentrations																						
	Tablets per Hour of Vita-D-Chlor Needed to Dechlorinate Drinking Water																					
Cl in discharge	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.2	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6
flow, ppm																						
Discharge flow																						
rate, gpm																						
100	0.3	0.3	0.4	0.4	0.5	0.5	0.6	0.6	0.7	0.7	0.8	0.8	0.9	0.9	1.0	1.0	1.1	1.2	1.2	1.3	1.3	1.4
150	0.4	0.5	0.5	0.6	0.7	0.8	0.9	0.9	1.0	1.1	1.2	1.2	1.3	1.4	1.5	1.6	1.6	1.7	1.8	1.9	2.0	2.0
200	0.5	0.6	0.7	0.8	0.9	1.0	1.1	1.3	1.4	1.5	1.6	1.7	1.8	1.9	2.0	2.1	2.2	2.3	2.4	2.5	2.6	2.7
250	0.7	0.8	0.9	1.0	1.2	1.3	1.4	1.6	1.7	1.8	2.0	2.1	2.2	2.3	2.5	2.6	2.7	2.9	3.0	3.1	3.3	3.4

Troubleshooting De-chlor

- Adjust flow rate.
 - Slow it down if chlorine is too high.
 - Speed it up if pH is too low.
- Managed discharges
 - Make an adjustment
 - Take a new sample
 - Call in
- Unplanned discharges
 - Control it
 - Call in

- 1. Make an adjustment
- 2. Record the adjustment
- 3. Take a new sample

Analytical Instruments

- Calibrate HQ40d on day of use for pH measurement.
- Verify DR 890, DR 900, or SL1000 on day of use for total chlorine measurement.

Field Setup

Safety from traffic

Identify sample

Maximize discharge flow distance

Public perception

Appropriate hoses, valves, meters, diffusers

Keep Record for Monthly Reporting

Measurements at regular intervals, and after every adjustment

		Poi	tland W	ater Bure	au Discharge Record	Appendix
	Discharge Loc	ation:			Date:	
	Discharge to -	A. NPI	DES outfall	B. BES f	acility C. Other (land application o	r sedimentation sump)
				For B. or C.	☐ BES permit obtained ☐ Not applicable	
	Planning & P	reparatior	n Tasks			
	☐ Bottle for	reactive pl	nosphorus	sample (For 00	1 Series Outfall to Columbia <u>Slough)</u>	Not applicable
	pH meter	calibrated	(Do this dail	ly)		
	☐ Secondary	/ standard	check for o	chlorine colorir	meter completed within last 3 month	ns
	Expected Disc	harge Volu	ıme:	gal	Expected chlorine concentration:(see formula on back of this sheet)	ppm
++-	Water	quality lin	nits for pH		ield Data pH of 6 – 9 Total chlorine of 0	.1 r.g/L maximum
<u>\</u>	Time *	Flow Rate, gpm	рН	Total Chlorine Residual, mg/L	Comments (Required when any measurements are of Start of discharge	out of compliance)
					Start or allowing go	
	l					

Record as "< 0.02", the instrument detection limit

West Side vs. East Side Geography

Resources

- Copy of protocol
- Dechlor tablets table
- Discharge record
- Checklist

